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Abstract. The three-dimensional stability of staticone-dimensional solutions of the Landau- 
Ginzburg equation isinvestigated. A general formula for the growth or decay rate is obtained 
for arbitrary local free energies, using a method developed earlier by Rowlands and Infeld 
for different equations. The results are then applied to quartic free energies. Among the real 
finite solutions obtained earlier, cnoidal waves are shown to be stable, and solitary waves 
and kinks marginally stable. Two other types of non-linear periodic waves are shown to be 
unstable. 

1. Introduction 

Some recent papers have been devoted to the form of the possible spatial structure of 
magnetic phase transitions (Khan 1986, Winternitz et af 1988, Skierski et af 1988). These 
workers used the Landau-Ginzburg equation to describe the order parameter in the 
magnetic material. This equation may be written in the form 

( i / r )  ( a ~ / a t )  = 2 V ~ M  - V ( M )  n o  (1 * 1) 
where M is the magnetisation, is the Landau-Khalatnikov damping coefficient, which 
sets the scale of the relaxation process, and the dot denotes a derivative with respect to 
the argument. The term on the left-hand side describes the relaxation of the system, 
while V ( M )  is the local free energy (see, e.g., Landau and Lifshitz 1980, Cyrot 1973). 

The above-cited workers have studied a wide class of exact analytic solutions of 
equation (1. l ) ,  and in particular time-independent ones. 

The situations studied include biquadratic functions V( M ) .  Among the obtained 
solutions are spatially one-dimensional ones, and in particular several different types of 
periodic non-linear waves (expressed in terms of the Jacobi elliptic functions dn(x, k ) ,  
sn(x, k )  and cn(x, k ) )  and also solitary pulses (domains) and kinks (Winternitz et a1 
1988). The method used was that of symmetry reduction, coupled with singularity 
analysis. The same method has been applied to obtain exact solutions of a variety of 
different non-linear Klein-Gordon and Schrodinger equations (Winternitz et af 1987, 
Gagnon and Winternitz 1989a, b, c). 
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The purpose of this paper is to study the stability and the relaxation of the obtained 
structures. More specifically, we study the stability of one-dimensional static solutions 
M = M o ( x )  of the Landau-Ginzburg equation ( l . l ) ,  which for M , ( x )  reduces to an 
ordinary differential equation. Integrating it once, we obtain the equation 

where a is a real integration constant, related to the amplitude of the spatial variations 
of MO. The quantity a is also directly related to the free energy at the point xo for which 
we have Mox(xo) = 0. Letter subscripts in (1.2) and below denote derivatives. 

The study of the stability of other than one-dimensional solutions is of considerable 
interest but goes beyond the scope of this article. 

A constant solution of equation (1.1) (or (1.2)) is defined by V ( M , )  = 0. The 
relaxation to such a spatially homogeneous and time-independent equilibrium is readily 
obtained by linearising about this state and solving the linearised equation to give 
M ( x ,  t )  = M O  + q0 exp(ik.x) exp{-r[2/k12 + V(Mo)]t} q j O  = constant. (1.3) 
For a constant equilibrium state where the free energy is a minimum (V(A4,) > 0) we 
see that any perturbation of the considered type relaxes back to the equilibrium state 
and that the presence of a spatial structure in the perturbation ( 1  kI2 > 0) enhances the 
relaxation rate. For an energy maximum V(M,) < 0, the system will only relax to 
equilibrium for sufficiently short-wavelength disturbances ( 1  kI2 > ) Vl/2). Otherwise the 
system is unstable and small disturbances increase exponentially in time. 

In order to study the stability and relaxation rates for time-independent but spatially 
varying solutions of (1.2), we apply a method of analysis originally introduced to study 
stability problems in plasma physics by Infeld and Rowlands (1979) (for a review see 
Infeld and Rowlands (1990)). A large body of work exists on the stability of solutions 
of non-linear equations. As somewhat similar in spirit, we mention the work of Harrowell 
and Oxtoby (1987) on perturbations of solitons. For soliton stability, see also Zakharov 
et a1 (1986). 

The method is relatively straightforward and so the present paper is self-contained. 
In section 2 we perform the analysis for arbitrary forms of V ( M ) ,  when MO is a periodic 
solution of equation (1.2). The case when V ( M )  is biquadratic is studied in section 3. 

The result of the analysis is that the linearisation of equation (1.1) about non-constant 
spatially periodic static equilibria leads to perturbations of the form 

where V ( x )  is a periodic function of x with the same period as M , ( x ) ,  k is an arbitrarily 
oriented small wavevector and y is a small growth (or decay) rate. 

(M0.x)2 - V ( M 0 )  = a (1.2) 

6 M ( x ,  t )  = V ( x )  exp(ik - x - yt)  (1.4) 

We obtain 

y/I' = - ( A 2 / A a C ) k i  + 2k: ki! = k x  k i  + k$ = k2 (1.5) 
where A is the wavelength of the non-linear equilibrium (solitons and kinks are con- 
sidered as A -+ x limits in this treatment), A, = dA/da and G is a positive definite 
quantity. 

The result (1.5) is similar to one obtained by Infeld and Rowlands (1979) in the 
context of a non-linear Klein-Gordon equation. The basic implication of the result (1.5) 
is the following. 

(i) For dA/da < 0, waves are always stable. 
(ii) For dA/da > 0, there is a range of angles 8 between the wavevector k of the 

perturbation and the x axis (along which we have the basic structure M , ( x ) )  yielding 
instability, namely M O ( x )  is then instable for 

(k: /k i l )  < A2/2il,G. (1.6) 



Stability analysis for the Landau-Ginzburg model 7145 

2. Basic formula for the growth rate 

Let us denote a static periodic solution of the reduced equation (1.2) as M o ( x ,  a) ,  
indicating its dependence on the integration constant a. To study the relaxation of such 
solutions we consider small disturbances about the equilibrium state and write 

We substitute (2.1) into (l.l), expand V(M) into a Taylor series and linearise in S M  
(assuming that 6 M  << M O ) ,  to obtain 

Since the coefficients in (2.2) are independent of time and periodic inx, we use Floquet's 
theorem (Ince 1956) to write 

where q ( x ,  a )  is a periodic function of the same period as M o ( x ,  a )  and the wavenumber 
k is real, to assure that 6 M  is bounded in space. The direction of k is arbitrary and we 
introduce the notation 

M ( x ,  t ,  a )  = M o ( x ,  a )  + 6 M ( x ,  t ,  a). 

-(i/r)(6M)l + 2 v 2 ( 6 ~ )  - V(M,) S M  = 0. 

(2.1) 

(2 .2)  

6 M ( x ,  t ,  a )  = ~ ( x ,  a)  exp(ik x - y t )  (2 .3)  

k, = kil = kcos 6' k, = ksin 8 (2.4) 
where k and 8 are constant. 

for y < 0 unstable, and for y = 0 marginally stable. 
Stability depends on the sign of y :  for y > 0 we say that the solution M o ( x ,  a)  is stable, 

The function q ( x ,  a )  satisfies 

(2.5) 
The operator L is self-adjoint over periodic functions; v ( x ,  a )  is periodic in x with 

period A = A(a) .  
It is usually not possible to solve eigenvalue problems such as (2.5) analytically; so 

we introduce a perturbative method, based on the assumption that k is small (long 
wavelength perturbations at arbitrary angles). We expand 

L v  = -(y/r)v - 4ikli1), + 2 k 2 v  L = 2 ( a 2 / d x 2 )  - V(Mo).  

v = & ( W O  + k v ,  + k 2 v 2  + .  . . 
y = ky, + k2y2 + . . . 

and, in view of the linearisation performed, assume that E 6 k2 
we keep terms of order 1, E ,  Ek, Ek2 (and drop 
L v o  = 0 and obtain a particular solution that is periodic in x ,  namely 

A further solution of L q o  = 0 that we shall need below is 

1. In equation (2.5) 
and &k3). At lowest order we have 

vo = (a/dx)[Mo(X,  all. (2.7) 

$0 = (a/aa>[Mo(X, all. (2.8) 

M , ( x ,  a)  = A?,@, ci) i = x / A ( a )  ci = a  (2.9) 

This solution is neither periodic nor spatially bounded. To see this, we redefine the 
static solution as 

where the period A ( a )  in general depends on the integration constant a (the special case 
when we have dA/da = 0 is analysed by Infeld and Rowlands (1979) and is of no interest 
in the present context). We have 
dMO(x, u ) / ~ u =  - [ d h ' o ( i ,  ci>/di](A,/A2)x + dA?,(.f, ci)/dci A. =dA/da. (2.10) 
Since fi,,(i, ci) is periodic in A?, the first term on the right-hand side is not bounded for 
x+ =. Thus, (2.7) is the only spatially bounded solution of L.0 = 0. 
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Proceeding to the next order in the expansion, namely Ek, we obtain 

~ q ,  = -(yl/r)qo - 4i cos 8 vox.  (2.11) 

We multiply (2.11) by qo and integrate over a period. In view of the self-adjointness of 
L w e h a v e ( q o l L q ' l ) = ( ~ l I L ~ o ) = O , w h e r e  

(2.12) 

Moreover, we have (qo, Vox) = 0 because of periodicity and we obtain, from (2.11), 

y1 = 0. (2.13) 

A particular solution of (2.11) with y 1  = 0 is 

= - iu (d~ , / ax )  COS e. (2.14) 

This solution is, however, not periodic, nor is it bounded; it represents a secular term. 
In order to obtain a bounded solution of the inhomogeneous equation (2.11), we add a 
particular solution of the homogeneous equation L v  = 0, namely one proportional to 
(2.10). The required solution is 

ql  = G l  - i cos e(A/A,)(aMo/aa) = -i(A/A,) cos e[afi,(a, ci)/ai i ] .  (2.15) 

The period of Ido@, ci) i n i  is unity; the period of q ,  inx  is hence A.  
The next order in the expansion is &k2 and yields the following equation for q2: 

L W ~  = (-y2/r + 2 ) ( a ~ ~ / a x )  - 4 COS* e(A/A,)(a/ax) 

x [ d M o / a a  + (dMo/ax)(A,/;i)x]. (2.16) 

We multiply both sides of (2.16) by MO,, integrate over a period A and start the 

(2.17) 

integration in (2.12) at a point xo satisfying 

(~Mo/ax)lx=,,, = (aM"/ax)lx=x,,+* = 0. 

Using the self-adjointness of L ,  we obtain 

$ ( a 2  M u )  dx. 
( - ~ + 2 s i n 2 6 ) $ ( M , , x ) 2 d x = 4 - ~ o s 2 ~  A MO,  - 

A, ax da 

We now define 

G = $ ( M 0 x ) 2  dx = 2 

(2.18) 

(2.19) 

where M1 and M 2  are two consecutive zeros of MO,, such that the integrand is non- 
negative for M I  s M s M 2 .  Finally we obtain 

y2 = -(A217/AaG) cos2 8 + 2 r  sin2 0 (2.20) 

(2.21) 

Returning to the expression (2.6) for the growth rate y ,  we obtain equation (1,.5), 
announced in section 1. The positive definite quantity G and the wavelength A are given 
in (2.21). 
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The calculation of the growth rate has thus been reduced to simple quadratures for 
an arbitrary form of the free energy V ( M ) .  As stated in section 1, the stability of the 
state Mo(x ,  a )  is determined by the sign of A, = dA/da. 

3. Stability and growth rates for a quartic free energy 

Let us now consider the case when the local free energy is a biquadratic polynomial 
V ( M )  = -2bM2 + cM4 with constant coefficients and c # 0. Exact solutions of the 
equations of motion were obtained by Winternitz et af (1988), using the method of 
symmetry reduction, Here we restrict ourselves to the case of finite (non-singular) real 
translationally invariant solutions M ( x ) .  We use equation (1.5) to calculate the growth 
rate y for the individual solutions and thus to establish their stability properties. For 
simplicity we put k ,  = 0, since the actual quantity to be calculated is A2/A,G and the 
expression for y with k ,  # 0 is then directly recovered from (1.5). 

Equation (1.2) for the exact solution can in this case be written as 

M’ = a + 2bM2 - cM4 (3.1) 
(we drop the subscript on M O ) .  Equation (3.1) is represented by the phase diagrams in 
figure 1 and a is the value of the intercept of the curve with the M = 0 axis. 

Equation (3.1) can be rewritten as 

M’ = -c(M’ - M?)(M2 - M : )  = P ( M )  M!.’ = ( b  3 .\/b2 + a,)/,. ( 3 4  
Let us now consider the individual solutions, corresponding to the different parts of 

figure 1. 

3.1. Four real roots of P(M)  and c > 0 

We must have a < 0, b > 0 and have chosen 0 < M1 < M 2  (figure l(a)) .  We have 

(3.3) 
dM 

q 2  = 1 - M : / M :  o < q 2 < 1  (3.4) 
where K ( q )  is the complete elliptic integral of the first kind (Byrd and Friedman 1971). 
Using (2.21) we find the expression for G in terms of first- and second-kind complete 
elliptic integrals to be 

G = (42/2/3c)[b/(2 - q 2 ) ] 3 / 2 [ ( 2  - q 2 ) q q )  - 2(1 - q 2 ) ~ ( q ) ] .  (3 .5)  
Calculating the derivative of the wavelength, we find that 

(dA/da) = (dA/dq)(dq/da) = ( ~ / 4 . \ / / 2 b ~ / ~ ) [ ( 2  - q 2 p 2 / q 4 ( l  - q 2 ) ]  

x [ (2  - q 2 ) W  - 2(1 - q2>K(q>1* 

s/rk2 = -6[K(q>l2q4(1  - 4’>/[(2- q 2 > w  - 2(1 - 4’)K(4>l2. 

(3.6) 

(3 .7)  

The final result for k ,  = 0 is 

In view of (3.7),  y is negative definite and hence the corresponding periodic solution 

M = &M2 dn( f iM2(x  - xo), q )  E =  (3.8) 

is unstable. 
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Figure 1. Phase diagrams M 2  versus M corresponding to real finite solutions of equation 
(3.1): ( a ) a  < 0, b > 0,c  > 0; (b)a  = 0, b > 0 , c  > O;(c)a > 0, b < 0 , c  > O ; ( d ) a  > 0, b > 0, 
c > O; (e )a  > 0, b < 0,c < 0, b? > a lc l ; ( f )a  > 0, b < 0,c < 0, b2 = alc/ .Thearrows between 
the figures indicate the limits of solutions for 1. -+ CO, where A is the wavelength for periodic 
solutions. 

The soliton limit of the solution (3.8) is obtained by taking a + 0, i.e. q2+ 1 (figure 
l(6)). In this case we obtain y - )  0 so that the soliton solution 

M = EM2/COSh[fiMZ(X - xO)]. (3.9) 
is marginally stable. 

3.2. T w o  real and two imaginary roots of P(M) and c > 0 

In this case we have a > 0, and the phase diagrams correspond to figure l(c) or figure 
l ( d ) ,  depending on whether we have b < 0 or b > 0. A similar calculation as in the 
previous case provides, for k ,  = 0, the following growth rate and wavelength: 

y/rk2 = 3{r2(1 - r2)/[(1 - 2r2)E(r ) /K(r )  - (1 - r2)I2} 

r2 = M : / ( M !  + lM2l2) M , > O  M 2  = ilM21 (3.10) 

A = 4[(2r2 - 1)/6]'I2K(r). 
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For b < 0 we have 0 < ? < 4; for b > 0 we have 1 < ? < 1. In both cases we obtain 

(3.11) 

The soliton limit is obtained by taking lM21 4 0 (figure l(d) becomes figure l(b)),  

y > 0 and the considered periodic solutions 

M(x) = M1 c n [ W M ?  + IM2I2)(X - XO), rl 

i.e. r-+ 1 and y+ 0. We again see that the solution (3.9) is marginally stable. 

3.3.  Four real roots of P ( M )  and c < 0 

In (3.1) we have c = -1cI < 0 ,  a > 0, 6 < 0 and the corresponding phase diagram is 
figure l(e). A real finite periodic solution satisfies -M1 S M c M I  < M 2  and is given by 

M =  MI s n [ q a 4 2 ( x  -x0)7 41 4 = M 1 / M 2  O < q < l .  (3.12) 

The wavelength and growth rate fork, = 0 calculated according to (2.20) and (2.21) 

A = (22/Z/Vqv?-+K(q) (3.13) 

Y P k 2  = -6{q2(1 - s2>/[(q2 + l ) ~ ( q ) / K ( q )  - (1 - S2)l2> (3.14) 

The kink solution corresponds to the limit q + 1, i.e. to figure l ( f ) .  Taking the limit 

(3.15) 

are 

and we see that the corresponding solution is unstable. 

in (3.13) and (3.14), we obtain A 4  x, y+ 0; so the kink 

M = +-M,  t a n h [ m M , ( x  - xo)]  

is marginally stable. 

4. Conclusions 

A systematic application of group theory makes it possible to obtain large numbers 
of particular solutions of many non-linear non-integrable equations. Whether these 
solutions, corresponding to specific initial and boundary conditions, are actually observ- 
able in nature depends to a large degree on their stability. Furthermore, stable solutions 
provide a good basis for further perturbation theory calculations. These should in turn 
provide good approximate solutions relevant for situations in which the group theoretical 
solutions no longer apply. Expressions of the type (1.5) for the growth rate should play 
an important role in this context. 

Turning to the results in section 3 for equation (3.1), we see that, of the three types 
of finite periodic solution obtained by Winternitz et a1 (1988), only one type is stable. 
These are the ‘cnoidal’ waves (3.11) corresponding to figures l(c) and l(d), and the 
corresponding antiferromagnetic spin waves should be observable. The solitary waves 
corresponding to figure l(b) (nucleation centres of magnetic order) and the kinks 
in figure l(f) (Bloch domain walls) are marginally stable and should thus also be 
observable. 

An intuitive understanding of the stability situation can be obtained directly from 
the phase diagrams in figure 1. A stable solution is obtained if we have dA/da < 0, i.e. 
if the wavelength A decreases as the intercept a increases. If the curve in figure l(a) is 
raised, a increases (towards a = 0, since it is negative) and figure l(a) turns into figure 
l(b):  a solitary wave with A+ x. Thus, for figure l(a) we have dA/da > 0 and the 
solution is unstable. Similarly, if the curve in figure l(e) is raised, a increases and the 
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solution approaches the kink (A + m) in figure l(f). Again we have dA/da > 0 and an 
unstable solution. On the other hand, if the curve in figure l (d )  is lowered, a decreases 
and we have A+ x as the solution approaches the solitary waves in figure l(b).  The 
corresponding solutions are stable. 

In a future publication we plan to study the stability of solutions in the case when the 
right-hand side of (3.1) is a sixth-order polynomial. We also plan to extend the general 
results to the case of complex order parameters (e.g. for non-linear Schrodinger 
equations), and to the case of other types of solution of equation (1.1), and in particular 
rotationally or cylindrically symmetrical ones. 
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